Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
International Journal of Contemporary Hospitality Management ; 2022.
Article in English | Web of Science | ID: covidwho-2191388

ABSTRACT

PurposeDrawing on the technology-organization-environment (TOE) framework, this study aims to investigate determinants of performance of artificial intelligence (AI) adoption in hospitality industry during COVID-19 and identifies the relative importance of each determinant. Design/methodology/approachA two-stage approach that integrates partial least squares structural equation modeling (PLS-SEM) with artificial neural network (ANN) is used to analyze survey data from 290 managers in the hospitality industry. FindingsThe empirical results reveal that perceived AI risk, management support, innovativeness, competitive pressure and regulatory support significantly influence the performance of AI adoption. Additionally, the ANN results show that competitive pressure and management support are two of the strongest determinants. Practical implicationsThis research offers guidelines for hospitality managers to enhance the performance of AI adoption and presents policy-making insights to promote and support organizations to benefit from the adoption of AI technology. Originality/valueThis study conceptualizes the performance of AI adoption from both process and firm levels and examines its determinants based on the TOE framework. By adopting an innovative approach combining PLS-SEM and ANN, the authors not only identify the essential performance determinants of AI adoption but also determine their relative importance.

2.
Ieee Open Journal of the Computer Society ; 1:209-219, 2020.
Article in English | Web of Science | ID: covidwho-1583788

ABSTRACT

The current COVID-19 pandemic and its uncertainty have given rise to various myths and rumours. These myths spread incredibly fast through social media, which has caused massive panic in society. In this paper, we comprehensively examined the prevailing myths related to COVID-19 in regard to the diffusion of myths, people's engagement with myths and people's subjective emotions to myths. First, we classified the myths into five categories: spread of infection, preventive measures, detection measures, treatment and miscellaneous. We collected the tweets about each category of myths from 1 January to 7 July in the year 2020. We found that the vast majority of the myth tweets were about the spread of the infection. Next, we fitted myths spreading with the SIR epidemic model and calculated the basic reproduction number R-0 for each category of myths. We observed that the myths about the spread of infection and preventive measures propagated faster than other categories of myths, and more miscellaneous myths raised and quickly spread from later June 2020. We further analyzed people's emotions evoked by each category of myths and found that fear was the strongest emotion in all categories of myths and around 64% of the collected tweets expressed the emotion of fear. The study in this paper provides insights for authorities and governments to understand the myths during the eruption of the pandemic, and hence enable targeted and feasible measures to demystify the most concerned myths in due time.

SELECTION OF CITATIONS
SEARCH DETAIL